Safety Verification utilizing Model-based Development for Safety Critical Cyber-Physical Systems
نویسندگان
چکیده
The application of cyber-physical systems (CPSs) in safety-critical application domain requires rigorous verification of their functional correctness and safety-relevant properties. We propose a practical verification process which enables to conduct safety verification of safety critical CPSs. The verification process consists of (a) a system model construction method, which generates a system model by combining software described in C and plant model code reused from model-based development, (b) a model transformation method, which transforms the plant models including differential algebraic equations (DAE) to approximate models without DAE to reduce verification complexity induced by DAE solver execution, (c) a model simplification framework, which enables the simplification of bond-graph plant models using domain-knowledge-based replacement of complex model components for further verification overhead reductions, and (d) a formal verification based on symbolic execution. We implemented the proposed methods and framework, and successfully applied the proposed verification process for safety verification of automotive brake control systems. The results of the study demonstrate that the verification detects a complex failure condition in a real-world brake control system from the generated system model and that the automated model transformations of the CPS models yield significant verification complexity reductions without impairing the ability to detect unsafe behavior.
منابع مشابه
A PVS-Simulink Integrated Environment for Model-Based Analysis of Cyber-Physical Systems
This paper presents a methodology, with supporting tool, for formal modeling and analysis of software components in cyber-physical systems. Using our approach, developers can integrate a simulation of logic-based specifications of software components and Simulink models of continuous processes. The integrated simulation is useful to validate the characteristics of discrete system components ear...
متن کاملAligning Cyber-Physical System Safety and Security
Safety and security are two key properties of Cyber-Physical Systems (CPS). Safety is aimed at protecting the systems from accidental failures in order to avoid hazards, while security is focused on protecting the systems from intentional attacks. They share identical goals – protecting CPS from failing. When aligned within a CPS, safety and security work well together in providing a solid foun...
متن کاملEnforcing Timeliness and Safety in Mission-Critical Systems
Advances in sensor, microprocessor and communication technologies have been fostering new applications of cyber-physical systems, often involving complex interactions between distributed autonomous components and the operation in harsh or uncertain contexts. This has led to new concerns regarding performance, safety and security, while ensuring timeliness requirements are met. To conciliate unc...
متن کاملA Model-Based Approach to Support Validation of Medical Cyber-Physical Systems
Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system d...
متن کاملModel-based Verification and Validation of an Autonomous Vehicle System
The software development for Cyber-Physical Systems (CPS), e.g., autonomous vehicles, requires both functional and non-functional quality assurance to guarantee that the CPS operates safely and effectively. EAST-ADL is a domain specific architectural language dedicated to safety-critical automotive embedded system design. We have previously modified EAST-ADL to include energy constraints and tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017